-
Test $\sum_{n=1}^\infty \dfrac{(-1)^n\ln{\left(n+6\right)}}{n^2}$ for convergence.
-
Does $\sum_{n=1}^\infty (-1)^n\cos{\left(\frac{1}{n}\right)}$ converge or diverge?
-
Does the series $\sum_{n=1}^\infty \dfrac{\cos{\left(\frac{n}{e^{\pi/e^2}}\right)}}{n^2}$ converge or diverge?
-
Does $\sum_{n=1}^\infty \dfrac{(-1)^n\sqrt{n^2+1}}{n^2}$ converge or diverge?
-
Is $\sum_{n=1}^\infty \dfrac{\sin^2{n}}{n\sqrt{n}}$ absolutely convergent, conditionally convergent, or divergent?